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Abstract

Objectives: This study aimed to develop a microsimulation model to estimate the health effects, 

costs, and cost-effectiveness of public health and clinical interventions for preventing/managing 

type 2 diabetes.

Methods: We combined newly developed equations for complications, mortality, risk factor 

progression, patient utility, and cost—all based on US studies—in a microsimulation model. We 

performed internal and external validation of the model. To demonstrate the model’s utility, we 

predicted remaining life-years, quality-adjusted life-years (QALYs), and lifetime medical cost 

for a representative cohort of 10 000 US adults with type 2 diabetes. We then estimated the 

cost-effectiveness of reducing hemoglobin A1c from 9% to 7% among adults with type 2 diabetes, 

using low-cost, generic, oral medications.

Results: The model performed well in internal validation; the average absolute difference 

between simulated and observed incidence for 17 complications was < 8%. In external validation, 

the model was better at predicting outcomes in clinical trials than in observational studies. The 

cohort of US adults with type 2 diabetes was projected to have an average of 19.95 remaining 

life-years (from mean age 61), incur $187 729 in discounted medical costs, and accrue 8.79 

discounted QALYs. The intervention to reduce hemoglobin A1c increased medical costs by $1256 

and QALYs by 0.39, yielding an incremental cost-effectiveness ratio of $9103 per QALY.

Conclusions: Using equations exclusively derived from US studies, this new microsimulation 

model achieves good prediction accuracy in US populations. The model can be used to estimate 

the long-term health impact, costs, and cost-effectiveness of interventions for type 2 diabetes in the 

United States.
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Introduction

Diabetes is a common chronic disease that causes serious health complications and 

contributes to as many as 293 000 deaths and $370 billion in economic costs annually in the 

United States.1–3 Type 2 diabetes accounts for 90% to 95% of all diabetes.4 Interventions to 

prevent the complications of type 2 diabetes can ease the burden of the disease and lower 

costs, but these benefits may accrue gradually over years or even decades, whereas the 

interventions usually incur upfront costs. Therefore, it may be difficult for policy makers to 

compare the benefits and costs of an intervention before it is implemented.

Type 2 diabetes simulation models that project long-term health effects, costs, and cost-

effectiveness of interventions can help policy makers make informed decisions that improve 

efficiency. Several type 2 diabetes simulation models exist.5–11 Most of these models apply 

risk equations to predict the development of diabetes-related complications that were derived 

from the United Kingdom Prospective Diabetes Study (UKPDS).7 These risk equations 

benefit from the long-term follow-up (up to 30 years; median follow-up of 17.6 years) of 

UKPDS. Nevertheless, the study began in the late 1970s; since then, the management of 

diabetes patients has changed, with new treatment goals for A1c, blood pressure, and lipids, 

and new medications and treatment devices have been introduced. Most importantly, trials 

conducted after 2000 often focused on a more intensive glycemic control than UKPDS did, 

bringing new evidence on the association between blood glucose and complication risks. In 

addition, advancements in rescue therapy and improved efficiency of the healthcare delivery 

system have significantly changed the survival pattern from acute events (eg, myocardial 

infarction [MI]).12 Furthermore, the UKPDS was limited to newly diagnosed patients in 

the United Kingdom and may be less applicable to individuals with established type 2 

diabetes or to countries such as the United States that have a different racial and ethnic 

composition. Costs of managing type 2 diabetes and its complications also differ widely 

between countries and are generally higher in the United States than in other countries.

In this article, we present a new type 2 diabetes microsimulation model focused on 

the US setting. Development of complications in the model is based on risk equations 

estimated using data from type 2 diabetes patients in 2 recent US clinical trials with large, 

diverse study populations and long-term follow-ups. Health utility equations were developed 

with data collected from the same study population and with a consistent definition of 

complications. Cost estimates of managing diabetes complications were developed using 

longitudinal design and one of the largest private insurance data sets.
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Methods

Modeling Approach and Simulation Flow

The implemented model is a discrete time microsimulation with a 1-year time step. All risk, 

complication, and mortality equations are executed for each person every time step until 

that individual dies or the specified model stopping condition is satisfied. A microsimulation 

provides an efficient mechanism of implementing complication equations that not only 

take a variety of time-varying risk factors as input but also depend on an individual’s 

disease history. Time-lagged and time-varying risk factors are required to update most 

complication equations in the model. The historical presence of certain complications or 

their occurrence in the current time step are further time-dependent inputs necessary to 

update most equations. A discrete time step of 1 year approximates the gradual development 

of complications over time in persons with type 2 diabetes and provides a reasonable time 

frame to capture the accumulation of diabetes-relevant complications that an individual may 

experience.

Figure 1 provides an overview of the model and its simulation flow. Users first specify the 

target population, including the number (N) of individuals and demographic variables, risk 

factors, and previous history of complication variables for the population to be simulated. 

Based on these specifications, the model generates the profiles of the N individuals. The 

default data source for characteristics is adults with diabetes in the National Health and 

Nutrition Examination Survey (NHANES) from 2009–2010 to 2015–2016, but the user can 

supply input data for individuals or population statistics from other data sources.

Projected disease progression for each individual in each year is determined by a set 

of 17 risk equations for complications that depend on the individual’s characteristics. 

For each complication, the model draws a random number from a uniform distribution 

(0–1) and compares it with the probability from the risk equation. If the draw is less 

than the probability, the individual incurs the complication. After going through all the 

complication equations, the model evaluates risk equations for mortality that project whether 

the individual dies during that cycle. The complications and mortality risk equations 

are derived from pooled longitudinal data on US participants in the Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) clinical trial, which continued in the ACCORD 

Follow-On Study, and the Action for Health in Diabetes13 clinical trial and follow-on study. 

Estimation of the risk equations for complications and mortality are described below and in 

Appendix 1 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2023.05.013.

After all individuals progress through the complication and mortality equations, the risk 

factors and complication histories for surviving individuals are updated using risk factor 

equations derived from the pooled ACCORD and Look AHEAD data. The individuals 

advance to the next year, where the simulation process repeats itself. The simulation 

continues until there are no individuals alive or the specified time horizon for the analysis is 

reached. Complications and life-years are summed across individuals and over time, yielding 

the cumulative cases per complication and remaining life-years.
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Costs and patient utility in each year are based on incident complications in the year 

and previous complications. These complications enter an annual type 2 diabetes cost 

equation derived using longitudinal data from the Optum de-identified Normative Health 

Information database14 and a patient utility equation derived from pooled ACCORD and 

Look AHEAD Health Utility Index Mark III measurements.13 Costs and patient utility are 

then summed across individuals and over time. Summing patient utility over time produces 

quality-adjusted life-years (QALYs).

Interventions may change risk factors or directly affect the probability that a complication 

occurs. The model includes interventions for glycemic control, hypertension control, 

cholesterol reduction, and smoking cessation, and users can specify other interventions that 

affect risk factors or apply risk reductions to complication risk equations.

To evaluate the projected effects of an intervention, each individual is run through the model 

twice, once with no intervention (ie, the status quo) and once with the intervention. Costs 

and QALYs summed across all individuals in the intervention arm are compared with costs 

and QALYs summed across all individuals in the no-intervention arm. These comparisons 

generate the incremental costs and the incremental QALYs for the intervention, which can 

then be combined to calculate the incremental cost-effectiveness ratio for the intervention.

The model addresses stochastic uncertainty by allowing the user to increase the population 

size to reduce random variation in outcomes. Parameter uncertainty is addressed through 

probabilistic sensitivity analysis (PSA), repeatedly drawing sets of key model parameters 

from appropriate distributions, and simulating results for each set of parameters.

The components of the model are described in greater detail in Appendix 2 in Supplemental 

Materials found at https://doi.org/10.1016/j.jval.2023.05.013.

Risk Equations for Complications and Mortality

We estimated multivariate, parametric, Weibull hazards models to predict absolute and 

relative risk associated with 17 diabetes-related complications, including 2 alternative 

measures of hypoglycemia (Table 1). The Weibull specification allows risk to increase, 

stay the same, or decrease over time, other factors being equal. To make the risk equations 

more dynamic, we included time-varying covariates as explanatory variables to assess how 

the risk of a complication changes as risk factors and previous complications change over 

time.

We estimated 3 mortality equations, depending on whether the person has a history of 

previous cardiovascular disease (CVD) or a CVD event during the period. This approach 

reflects that mortality risk is high immediately after a CVD event and higher for persons 

with a history of CVD than for persons with no history of CVD. Equation 1 includes 

individuals who do not have a history of CVD; they remain in the equation until they 

die, have a qualifying CVD event, or are lost to follow-up. Once these individuals have 

a qualifying CVD event, they are moved into the second equation. Equation 2 includes 

individuals who have a qualifying CVD event (MI, stroke, congestive heart failure, angina, 

revascularization) during the study. This equation includes but is not limited to individuals 
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with a fatal MI or stroke who die on the same day as their event. Equation 3 includes 

individuals with a baseline history of CVD events or who had a CVD event during the 

trial and survived >1 year after the event. Each mortality equation estimates deaths from all 

causes, not just those from diabetes-related conditions.

Equations 1 and 3 are estimated as Gompertz hazard models, where the analytic time 

variable is age. Age is used as the analytic time variable because general population 

mortality rates increase with age. Equation 2 is a logistic equation where all observations 

within a year of a CVD event are collapsed down to a single observation per person. 

Equations 2 and 3 include the type of CVD event in the current year (equation 2) or previous 

years (equation 3).

Further details on estimation of the risk equations and the parameter estimates are 

presented in Appendix 1 in Supplemental Materials found at https://doi.org/10.1016/

j.jval.2023.05.013.

Programming, Performance, and Code

The model is programmed in Python (Python Software Foundation) and runs on any 

operating platform as long as Python (version 3.8+) is installed. A single iteration (including 

the no-intervention and intervention arms) with a basic glycemic intervention, a population 

of 1000 individuals, and a time horizon of 30 years takes 1.4 seconds on a MacBook 

Pro laptop with the M1 pro CPU and 16GB of RAM. The same iteration with 10 000 

and 100 000 individuals takes 113 and 114.8 seconds, respectively. This roughly linear 

scaling implies that n iterations of a particular simulation will take n * time(single run). 

Two areas are most promising for performance gains: (1) parallel processing the model and 

(2) minimizing input/output operations (Appendix 2, Section 7, in Supplemental Materials 

found at https://doi.org/10.1016/j.jval.2023.05.013).

The code for the model is available in a publicly accessible repository (https://github.com/

RTIInternational/diabetes-sim-backend-only; a github account is required).

Validation of the Model

To validate how well the model predicts disease progression, we performed a series of 

internal and external validation exercises. Internal validation examines how well the model 

predicts the outcomes in the data set used to derive the equations in the model. External 

validation considers how well the model predicts outcomes in data sets that were not used to 

derive the equations in the model.

Internal validation

We simulated outcomes using an input data set consisting of baseline demographic, risk 

factors, and complication history for the 14 811 participants with complete data in the 

ACCORD and Look AHEAD public-use data sets. We then simulated the development of 

complications yearly for 13 years (the last year with a large number of observations within 

the study data) using the risk equations, applying the mortality equations and updating risk 

factors and previous complications at the end of each year.
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To compare the observed and simulated values, we performed separate Kaplan-Meier15 

(KM) estimates on the observed and simulated results for each complication. The KM 

approach accounts for differences in sample size. We then compared the simulated KM 

estimates with the observed KM estimates at 13 years. We calculated the average ratio of 

simulated KM to observed KM cumulative incidence across complications. Values close to 

one suggest that, on average, the simulation model produces estimates that are close to the 

observed values. We also calculated the mean absolute deviation between the simulated and 

observed KM values. Values close to zero indicate that the deviations are small on average.

External validation

We performed external validation of the type 2 diabetes simulation model using aggregate, 

cohort-level data for 6 studies: Action in Diabetes and Vascular Disease: Preterax and 

Diamicron MR Controlled Evaluation (ADVANCE),16 Atorvastatin Study for Prevention of 

Coronary Heart Disease Endpoints in Non-Insulin-Dependent Diabetes Mellitus (ASPEN), 

Dapagliflozin Effect on Cardiovascular Events—Thrombolysis in Myocardial Infarction 

(DECLARE) 58,17 Veterans Affairs Diabetes Trial (VADT),18 Jackson Health Study (JHS), 

and Multi-ethnic Study of Atherosclerosis (MESA).16–21

ADVANCE, ASPEN, DECLARE, and VADT were clinical trials that included separate 

control and intervention arms and only included people with diabetes, whereas JHS and 

MESA were observational cohort studies that included people with and without diabetes at 

baseline. Our external validation focused on JHS and MESA participants with diabetes at 

baseline.

For each study arm, we created an input data set of N individuals. Each individual was 

assigned baseline demographic, risk factor, and previous complication history variables 

drawn from distributions for the percentage or mean and SD for the variable in the study 

population. If published data for some of the variables were not available for a study, we 

applied statistics from ACCORD, Look AHEAD, or NHANES type 2 diabetes participants, 

depending on which data set’s population was most comparable with the study’s population. 

We ran the model for the integer number of years closest to the median number of years in 

the study and used the intervention screens to incorporate the changes in risk factors in each 

study arm.

We then compared the simulated number of complications and events in the model with the 

observed number of complications and events in the study arm. To account for differences 

between the integer number of years simulated in the model and the median follow-up in the 

study, we converted the simulated and observed events to rates per 100 life-years. We plotted 

the simulated versus observed rates by study across all complications and by individual 

complications across studies. Observed data for some complications were not available for 

all studies, and in some cases, the reported complications were defined differently from how 

the model complications were defined.

Simulating the Lifetime Health and Medical Cost of the US Population With Type 2 

Diabetes (Application 1)
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We used the model to predict the cumulative incidence of complications, costs, and QALYs 

for a population of 10 000 US representative adults with type 2 diabetes. To generate the 

simulation population, we entered the mean and SDs for demographic variables, risk factors, 

and baseline history of complications for adult participants with diabetes in 4 NHANES 

waves (Appendix 2, A2 Table 3, in Supplemental Materials found at https://doi.org/10.1016/

j.jval.2023.05.013). We performed a PSA, running 100 iterations of 10 000 individuals while 

drawing complication costs and disutility values for each iteration based on their mean and 

standard error (SE). We ran the model until all individuals reached the end of life or 100 

years of age.

Simulating the Cost-Effectiveness of an Intervention (Application 2)

To demonstrate the effect of an intervention in the model, we analyze a simple glycemic 

intervention that lowers hemoglobin A1c (HbA1c). We performed a PSA, running 100 

iterations of 10 000 individuals with the intervention effects on HbA1c distributed normally 

(mean = 2%, 95% confidence interval bound by 0) and intervention costs distributed 

uniformly (mean = $361.50 per year ±25%); complication costs and disutility values were 

varied as in application 1. The effects and costs are based on taking 2 low-cost generic 

drugs: metformin and either a sulfonylurea or thiazolidine-dione, which each reduce HbA1c 

by 1% and cost $40 and $321.50 based on median annual prices for the generics on the 

Federal Fee Schedule. The intervention is applied to individuals aged 61 years with diabetes 

duration of 1 year who have an initial HbA1c of 9%. All other baseline variables are set 

equal to the mean values in the NHANES population with diagnosed diabetes. We assume 

that the intervention lasts for the individual’s remaining lifetime or until the age of 100 

years.

Results

Internal Validation

Results of the internal validation are shown in Figure 2, which plots simulated and observed 

incidence for individual complications based on the 13-year KM results. If the model 

predicts observed data perfectly, the points for each complication would fall along a 45-

degree line with slope = 1 and intercept = 0. The dotted line in the graph represents the 

simple regression slope for the complication points. Its slope (1.0509) is a little > 1, and its 

intercept (0.0015) is close to 0.

The average ratio of simulated to observed cumulative incidence for the 17 complications 

was 1.047, indicating that the estimates are reasonably close to the observed values on 

average (see the Validation Report Supplemental Materials, Appendix 3, A3 Table 1 

in Supplemental Materials found at https://doi.org/10.1016/j.jval.2023.05.013). The mean 

absolute deviation was 0.079, indicating that the average absolute deviation is < 8%. The 

Validation Report also includes figures showing the simulation and observed KM survival 

curves for each complication for every year through year 13. In general, the simulation and 

observed survival curves are closely aligned.
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External Validation

Figure 3 plots the predicted versus observed complication rates per 100 person-years across 

control and intervention arms of the ASPEN, ADVANCE, DECLARE, and VADT clinical 

trials and the single arms of the JHS and MESA observational studies. Many of the pairs 

cluster close to the 45-degree line, where the predicted and observed complication rates are 

equal, but there are obvious deviations from this relationship.

The Validation Report (Appendix 3 in Supplemental Materials found at https://doi.org/

10.1016/j.jval.2023.05.013) shows the results separately for the 4 trials and the 2 

observational studies. Overall, the model predications appear closer to the observed rates 

for the clinical trials than for the observational studies. The Validation Report also shows 

predicted versus observed results for individual complications and mortality. For mortality, 

the model appears to underpredict mortality in several of the external validation exercises.

Application 1: Simulating the Lifetime Health and Medical Cost of the US Population With 
Type 2 Diabetes

The first 2 columns of Table 2 show the remaining life-years, costs, QALYs, and cumulative 

incidence of complications for the simulation of 100 iterations of 10 000 individuals with 

baseline characteristics derived from participants with diagnosed diabetes in 4 NHANES 

waves. On average, the remaining life expectancy is 19.95 (SE = 0.01) years, costs are $187 

729 (SE = $1038), and QALYs are 8.79 (SE = 0.006) per person, when costs and QALYs are 

discounted at a 3% annual rate.

Neuropathy, microalbuminuria, and hypoglycemia requiring medical attention are among the 

most common complications. Among more severe complications, amputation and dialysis 

are relatively rare (< 1000 cases), blindness is relatively common (2865 cases), and CVD 

events range from stroke (900 cases) to revascularization (2723 cases), with angina (1223 

cases), MI (1565 cases), and congestive heart failure (1755 cases) between these extremes.

Application 2: Simulating the Cost-Effectiveness of an Intervention

The glycemic intervention increases cost by $1256 (SE = $249) per person and results in 

increases of 0.98 (SE = 0.04) life-years and 0.39 (SE = 0.02) QALYs per person (the last 

6 columns of Table 2). The incremental cost-effectiveness ratio is $9103 (SE = $4762) per 

QALY. The intervention reduces all complications except neuropathy, with the percentage 

reduction in a complication depending on the size of the hazard ratio for HbA1c in the 

complication’s risk equation and its interplay with the history of other complications.

Conclusions

We developed a new diabetes simulation model to estimate the long-term health impacts, 

costs, and cost-effectiveness of interventions for preventing/managing type 2 diabetes. The 

key components in the model—risk equations, patient utility, and complication costs—are 

based on recent US studies, making the model especially relevant for US applications. 

The model accounts for US racial/ethnic groups, current US healthcare costs, and current 

US treatment patterns. Moreover, the modeling framework is flexible, allowing researchers 
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using the model to specify the effectiveness and costs of interventions, incorporate new 

complications, and change model parameters including complication costs and disutilities 

and discount factors.

We provided 2 applications to demonstrate the model’s utility. The model can be used to 

predict remaining life-years, costs, and QALYs for different cohorts of adults with type 2 

diabetes. In application 1, we presented the predictions for a representative cohort of adults 

with type 2 diabetes in the United States. Policy makers can also use the model to estimate 

the long-term outcomes and cost-effectiveness of interventions such as glycemic control 

(application 2). Users can choose from a list of interventions and vary the magnitude of 

intervention effects.

Results from the extensive internal and external validations showed our new model 

performed well. For internal validation, the predicted complications were close to the 

observed complications, and the average deviation between predicted and observed 

complications was < 10%. For external validation, we compared model predictions with 

outcomes from 2 observational studies and the treatment and control arms of 4 clinical 

trials. The model appeared to better estimate outcomes from the clinical trials than from 

the observational studies. The model appears more likely to underestimate the observed 

rates in the observational studies. There are at least 2 possible explanations for this result. 

First, participants in clinical trials may be healthier than the general population recruited 

for an observational study. Our risk equations were derived from ACCORD and Look 

AHEAD, and participants in those trials and 4 external validation clinical trials might have 

been healthier than the participants in the observational JHS and MESA studies, even after 

controlling for participant characteristics. Second, although ACCORD and Look AHEAD 

included significant numbers of white, black, and Hispanic people, we cannot fully rule out 

differences related to race/ethnicity or location.

For mortality, the model appears to underpredict mortality in several of the external 

validation exercises. Because underprediction of mortality could affect estimated costs, 

QALYs, and cost-effectiveness ratios in analyses with a long time horizon, we recommend 

calibrating mortality for analyses with time horizons > 10 years. Mortality calibration 

is discussed in Appendix 3 in Supplemental Materials found at https://doi.org/10.1016/

j.jval.2023.05.013.

Our model has limitations, many of which are inherent to all disease simulation models. 

First, the data sources for the risk equations that drive disease progression in the model 

are clinical trials, ACCORD, and Look AHEAD, and their trial participants may not be 

representative of all US adults with type 2 diabetes. ACCORD focused on individuals 

with established diabetes and previous/high risk of CVD. Look AHEAD included some 

individuals with newly diagnosed diabetes but focused on individuals who were overweight 

or had obesity. Participants in clinical trials may also receive better care than the typical 

diabetes patient. Balanced against these limitations are the following strengths: ACCORD 

and Look AHEAD focus on US diabetes patients, measure complications regularly, have 

relatively long follow-ups, and have enough complications to support estimation of risk 

equations.
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Second, the model can only directly predict the impact of interventions on a complication 

through the intervention’s effect on risk factors that enter the risk equation for that 

complication. For example, if 2 medications each lower HbA1c by 1% and have no other 

effects on risk factors, the model will predict that the interventions have the same effect on 

complications. Recent clinical trials for newer diabetes medications appear to show larger-

than-predicted risk reductions for CVD or renal outcomes.17,22–25 Our model would not 

predict these effects prospectively. Nevertheless, once risk reductions have been identified, 

we can incorporate the risk reductions directly into the model to evaluate the medications’ 

effects on outcomes and costs.

Third, simulation models often extrapolate outcomes observed in clinical studies to longer 

time horizons, different age groups, or different populations, and these extrapolations are not 

always validated. The longest follow-up in the ACCORD and Look AHEAD data that we 

analyzed was 13 years, which is longer than the follow-up in most studies of type 2 diabetes 

except UKPDS. ACCORD and Look AHEAD covered participants aged 45 to 75 years at 

baseline and included a large share of participants who had diabetes for > 10 years. We 

believe that the model may accurately represent older adults with diabetes. The model has 

not been validated for people with type 2 diabetes in their 20s and 30s or for people outside 

the United States, and care should be taken when applying the model to these populations.

The purpose of the model is to inform policy makers about the benefits and costs of public 

health policies and clinical interventions for preventing/managing type 2 diabetes. These 

impacts are difficult to compare without a simulation model because of the difference in 

timing between the costs and benefits of an intervention. Choosing between interventions 

based on long-term benefits and costs can reduce the burden of diabetes and lead to more 

efficient use of healthcare resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the model and simulation flow. Once a scenario has been defined, the input 

population is initialized at t = 0. During initialization, baseline values for all risk factors 

and complication histories are calculated and any selected basic intervention is applied. 

After initialization, the simulation runs t time steps of the model and loops over all living 

individuals (i) every time step (t). Within each time step, risk factors are updated first 

in random order except for the update to an individual’s smoking state, which is always 

updated last. The update of risk factors at t = 1 accounts for baseline values of the risk 

factors. Next, all previous history of complication variables are updated, again in random 

order except for CVD. CVD state is updated after the set of macrovascular complications 

has been updated. Mortality is updated last, depending on the CVD state of an individual. 

Not shown in the figure are time-invariant risk factors: age at entry, diabetes duration at 

entry, accord, postsecondary education status. Black, Hispanic, other race.

bmi indicates body mass index; CHF, congestive heart failure; CVD, cardiovascular disease; 

EGFR 30 (60), estimate glomerular filtration rate < 30(60) mL/min/1.73m2; hba1c, glycated 

hemoglobin A1c; hdl, HDL cholesterol; ldl, LDL cholesterol; MI, myocardial infarction; 

sbp, systolic blood pressure.
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Figure 2. 
Simulated versus observed complications at year 13 (internal validation).
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Figure 3. 
Observed versus predicted diabetes complication rates by study.
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